8 research outputs found

    A SHORT NOTE ON NESTED SUMS

    Get PDF

    Evaluating Indoor Positioning Systems in a Shopping Mall: The Lessons Learned From the IPIN 2018 Competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75 th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Overcoming Kinematic Singularities for Motion Control in a Caster Wheeled Omnidirectional Robot

    No full text
    Omnidirectional planar robots are common these days due to their high mobility, for example in human–robot interactions. The motion of such mechanisms is based on specially designed wheels, which may vary when different terrains are considered. The usage of actuated caster wheels (ACW) may enable the usage of regular wheels. Yet, it is known that an ACW robot with three actuated wheels needs to overcome kinematic singularities. This paper introduces the kinematic model for an ACW omni robot. We present a novel method to overcome the kinematic singularities of the mechanism’s Jacobian matrix by performing the time propagation in the mechanism’s configuration space. We show how the implementation of this method enables the estimation of caster wheels’ swivel angles by tracking the plate’s velocity. We present the mechanism’s kinematics and trajectory tracking in real-world experimentation using a novel robot design

    Gait and Trajectory Optimization by Self-Learning for Quadrupedal Robots with an Active Back Joint

    No full text
    This paper presents an efficient technique for a self-learning dynamic walk for a quadrupedal robot. The cost function for such a task is typically complicated, and the number of parameters to be optimized is high. Therefore, a simple technique for optimization is of importance. We apply a genetic algorithm (GA) which uses real experimental data rather than simulations to evaluate the fitness of a tested gait. The algorithm actively optimizes 12 of the robot’s dynamic walking parameters. These include the step length and duration and the bending of an active back. For this end, a simple quadrupedal robot was designed and fabricated in a structure inspired by small animals. The fitness function was then computed based on experimental data collected from a camera located above the scene coupled with data collected from the actuators’ sensors. The experimental results demonstrate how walking abilities are improved in the course of learning, while including an active back should be considered to improve walking performances

    Decentralized Motion Planning for Load Carrying and Manipulating by a Robotic Pack

    No full text
    In many cases, a pack of robots holds an advantage over a single robot such when an oversized or over-weighted load is to be carried. In such cases, a single robot will not do. Nevertheless, this may not be an easy task for a pack of robots as well, especially when the load needs to be lifted off the ground making the cooperative task less tolerant of errors. The limited research on such a load can be attributed to the mechanical complexity of the problem. Notably, previous studies have not considered the spatial, decentralized, communication-free scenario. We, therefore, consider a robotic pack of six agents that assumes the task of spatially moving a load through a cluttered space. As it transports the load, the pack carefully avoids planar obstacles while maintaining its orientation. To do so, we model the whole system as a six Prismatic-Prismatic-Spherical-Spherical (6-PPSS) redundant mobile platform, having twelve degrees of freedom. This paper focuses on a decentralized control scheme where no mutual communication is needed. Each agent calculates its ego movements according to the height of its corresponding load-node; the surrounding obstacles, and; the goal’s relative position. To avoid numerical errors appearing in the vicinity of singular configurations, we calculate the platform’s forward kinematics in the model’s full configuration space. We then show how this rationale can be further extended to formulate a distributed control scheme for the motion planner. We demonstrate our algorithms in several simulated scenarios and in a set of real-world experiments using specially designed omnidirectional robot agents. We test the ability of the pack to maintain the load’s orientation just by measuring the load’s height at the holding node of each agent. Lastly, we measured the time required for the pack to assume a desired load orientation. Results indicated that even in the presence of a 10-degree tilt error, the load was able to be restabilized within a maximum of 15 seconds in simulated conditions and 20 seconds in real-life experiments
    corecore